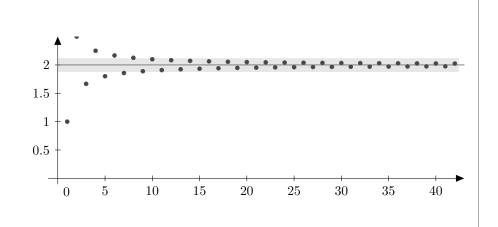
Exercice(s):

Exercices 9 et 10 page 30

IV. Limites des suites et recherches de seuil

1. Limite finie

Définition 7.2 : — d'une suite convergente vers l -


Une suite (u_n) admet une limite l (ou converge vers l) lorsque tout intervalle centré en l (i.e. de la forme $[l-h;l+h],\ h>0$) contient tous les termes de la suite à partir d'un certain rang. Pour tout h>0, il existe un rang N tel que pour tout $n\geq N$, on a $|u_n-l|< h$.

On note alors:

$$\lim_{n \to +\infty} u_n = l.$$

Remarque 7.3:—

Graphiquement, cela se traduit par : quelque soit la largeur de la bande horizontale choisie, il existe un rang à partir duquel tous les points de la suite (u_n) sont dans cette bande et il n'y a qu'un nombre fini de points à l'extérieur de la bande.

Complément(s) : ______

La vidéo du manuel expliquant la remarque précédente (du début jusqu à 40 s) :

https://educadhoc.hachette-livre.fr/extracts/complet/9782017102083/0EBPS/ressources/chapitre_1_p022_notion_de_limite_d_une_suite.mp4

-Remarque~7.5:-

Pour conjecturer la limite d'une suite, on peut utiliser :

- 1. la représentation graphique de u_n dans le plan (c'est-à-dire l'ensemble des points $(n; u_n)$)
- 2. la représentation graphique de u_{n+1} en fonction de u_n ou de (u_n) sur un axe;
- 3. un tableau de valeurs.

Complément(s):

La vidéo ci-dessous, d'Yvan MONKA, illustre la notion de limite finie à l'aide d'un exemple.

Il utilise un tableau de valeurs pour visualiser cette limite.

Vous pouvez visualiser cette vidéo en utilisant le lien suivant (jusquà 4:10):

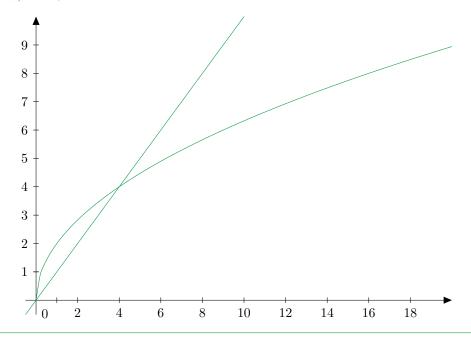
https:

//www.youtube.com/watch?v=CsBorh8LLyE&list=PLVUDmbpupCaoqExMkHrhYvWi4dHnApgG_&index=17

On s'interressera uniquement à la suite (u_n) de cette vidéo. La suite (v_n) sera utilisée ultérieurement.

Exemple 7.7:

On définit la suite (u_n) pour tout $n \ge 3$ par $u_n = 1 - \frac{10}{(n+1)^2}$.


- 1. Représenter le nuage de points $(n; u_n)$ pour $0 \le n \le 30$.
- 2. A l'aide du graphique, conjecturer la limite de la suite (u_n) .
- 3. Ecrire un algorithme qui donne la valeur de n pour laquelle $|u_n l| < 0,05$. Programmer cet algorithme avec Python et donner la valeur de n affichée.

Complément(s) : _

Vous pouvez visualiser cet aspect graphique en utilisant l'exercice résolu de votre manuel qui se trouve en page 19 (graphiques 1 et 3).

Exemple 7.9:

On a représenté, sur le graphique suivant, la fonction f. On définit (u_n) par la relation de récurrence suivante $u_{n+1} = f(u_n)$ et $u_0 = 18$.

