Exercice 1:

1. La fonction B est du type $\frac{u}{v}$ où $u(x) = -2x + 10\sqrt{x} - 10$ et v(x) = x. Ces deux fonctions sont définies et dérivables sur [1; 10] et, pour tout $x \in [1; 10]$, on a :

$$u'(x) = -2 + 10\frac{1}{2\sqrt{x}} = -2 + \frac{5}{\sqrt{x}}$$
 et $v'(x) = 1$.

La fonction B est donc dérivable sur [1;10] comme quotient dont le dénominateur ne s'annule pas et, pour tout $x \in [1;10]$, on a :

$$B'(x) = \frac{\left(-2 + \frac{5}{\sqrt{x}}\right)x - (-2x + 10\sqrt{x} - 10)}{x^2}$$

$$= \frac{-2x + 5\sqrt{x} + 2x - 10\sqrt{x} + 10}{x^2}$$

$$= \frac{-5\sqrt{x} + 10}{x^2}$$

$$= \frac{-5(\sqrt{x} - 2)}{x^2}.$$

Etudions le signe de $\sqrt{x} - 2$ lorsque $x \in [1; 10]$:

— On a:

$$\sqrt{x} - 2 = 0 \iff \sqrt{x} = 2$$
$$\iff x = 4.$$

— Comme la fonction $x \mapsto \sqrt{x}$ est une fonction croissante, on a :

$$\sqrt{x} - 2 > 0 \iff x > 4$$
 et $\sqrt{x} - 2 < 0 \iff x < 4$.

De plus, comme pour tout $x \in [1; 10]$, $x^2 > 0$, alors le signe de B' est donné par le signe contraire de $\sqrt{x} - 2$ (présence du -5 en facteur).

Ainsi, on peut donner le tableau de signes suivant :

x	1		4		10
Signe de $B'(x)$		+	0	_	

Ainsi, on en déduit les variations de la fonction B sur [1;10]:

- Pour tout $x \in [1; 4[$, on a B'(x) > 0 et la fonction B est alors strictement croissante sur cet intervalle.
- Pour tout $x \in]4;10]$, on a B'(x) < 0 et la fonction B est alors strictement décroissante sur cet intervalle On peut alors donner le tableau de variations de la fonction B sur [1;10]:

x	1		4		10
Signe de $B'(x)$		+	0	_	
Variatons de B	-2		$\frac{1}{2}$	_	$3 + \sqrt{10}$

- 2. (a) Le bénéfice maximal est atteint lors de la production de 4000 pièces et vaut 500€.
 - (b) On a:

$$B(x) = 0,35 \iff \frac{-2x + 10\sqrt{x} - 10}{x} = 0,35$$

$$\iff \frac{-2x + 10\sqrt{x} - 10}{x} - 0,35 = 0$$

$$\iff \frac{-2,35x + 10\sqrt{x} - 10}{x} = 0$$

$$\iff -2,35x + 10\sqrt{x} - 10 \quad \text{et} \quad x \neq 0.$$

On pose $u = \sqrt{x}$, on a alors :

$$-2,35x + 10\sqrt{x} - 10 \iff \begin{cases} -2,35u^2 + 10u - 10 = 0\\ u = \sqrt{x} \end{cases}$$

Soit Δ le discriminant de $-2,35u^2+10u-10$:

$$\Delta = 10^{2} - 4 \times (-2, 35) \times (-10)$$

$$= 100 - 94$$

$$= 6.$$

Comme $\Delta > 0$ alors l'équation $-2,35u^2 + 10u - 10 = 0$ admet deux racines :

$$u_1 = \frac{-10 - \sqrt{6}}{2 \times (-2,35)}$$
 et
$$u_2 = \frac{-10 + \sqrt{6}}{2 \times (-2,35)}$$
$$= \frac{10 + \sqrt{6}}{4,7}$$

$$= \frac{10 - \sqrt{6}}{4,7}$$

Ainsi l'équation $-2{,}35x + 10\sqrt{x} - 10$ admet deux solutions :

$$u_1^2 = \left(\frac{10 + \sqrt{6}}{4,7}\right)^2 \approx 7,016$$
 et $u_2^2 = \left(\frac{10 - \sqrt{6}}{4,7}\right)^2 \approx 2,581.$

Finalement, le bénéfice unitaire est égal à $0.35 \in lorsque$ l'entreprise produit 2.581 pièces ou 7.016 pièces par semaine.

Exercice 2:

- 1. Lorsque $\alpha = 0$ ou $\alpha = 2\pi$.
- 2. (a) En utilisant Pythagore, on a:

$$R^2 = h^2 + r^2$$

Finalement, on obtient:

$$h = \sqrt{R^2 - r^2}.$$

De plus, on a:

$$R^2 - r^2 > 0 \iff R^2 > r^2$$

 $\iff R > r > 0 \qquad \text{car } r > 0$

(b) Le volume d'un cône est donné par :

$$V = \frac{\pi}{3}r^2h = \frac{\pi}{3}r^2\sqrt{R^2 - r^2}.$$

(c) La fonction f est dérivable sur [0; R[comme produit de deux fonctions dérivables sur [0; R[. f est donc de la forme $u \times v$ avec $u(x) = \frac{\pi}{3}x^2$ et $v(x) = \sqrt{R^2 - x^2}$. De plus, pour tout $x \in [0; R[$, on a :

$$u'(x) = \frac{2\pi}{3}x$$
 et $v'(x) = \frac{-2x}{2\sqrt{R^2 - x^2}} = \frac{-x}{\sqrt{R^2 - x^2}}$

Ainsi, pour tout $x \in [0; R[$, on a:

$$f'(x) = \frac{\pi}{3}x^2 \times \frac{-x}{\sqrt{R^2 - x^2}} + \frac{2\pi}{3}x \times \sqrt{R^2 - x^2}$$

$$= \frac{-\pi x^3 - 2\pi x^3 + 2\pi R^2 x}{3\sqrt{R^2 - x^2}}$$

$$= \frac{-\pi x (3x^2 - 2R^2)}{3\sqrt{R^2 - x^2}}$$

$$= \frac{-\pi x (\sqrt{3}x - \sqrt{2}R) (\sqrt{3}x + \sqrt{2}R)}{3\sqrt{R^2 - x^2}}$$

On peut alors donner le tableau de signes suivant :

x	$0 \sqrt{\frac{2}{3}}R R$
Signe de $-\pi x$	0 -
Signe de $\sqrt{3}x - \sqrt{2}R$	- 0 +
Signe de $\sqrt{3}x + \sqrt{2}R$	+
Signe de $f'(x)$	0 + 0 -
Variations de f	$\frac{2\pi R^3}{9\sqrt{3}}$

(d) Pour R = 10, on a le tableau de variations suivant :

x	$1 10\sqrt{\frac{2}{3}} 10$
Variations de f	$\frac{2000\pi}{9\sqrt{3}}$ $\frac{\pi}{3}\sqrt{99}$ 0

(e) graphique

(f) D'après le tableau de variations, le maximum de la fonction f sur [0; 10] est atteint pour $x = \sqrt{\frac{2}{3}}R$. Le volume du cône exprimé en fonction de r est donné par la formule suivante :

$$V = f(r)$$
.

Ainsi, le maximum du volume du cône est atteint lorsque $r = \sqrt{\frac{2}{3}}R$.

De plus, on a:

$$r = \sqrt{\frac{2}{3}}R \iff \frac{r}{R} = \sqrt{\frac{2}{3}}.$$

(g) On a le périmètre de l'arc BSA est $p=R\alpha$. De plus, le périmètre de la base du cône est aussi donné par $p=2\pi r$.

On a alors:

$$2\pi R\sqrt{\frac{2}{3}} = R\alpha \iff \alpha = 2\pi\sqrt{\frac{2}{3}}.$$

Soit $\alpha \approx 294^{\circ}$.

3. (a) En reprenant la question 2.(a), on trouve :

$$r = \sqrt{R^2 - h^2}.$$

Par un même raisonnement, il vient que

$$0 < h < R$$
.

(b) Le volume d'un cône est donné par :

$$V = \frac{\pi}{3}r^2h = \frac{\pi}{3}(R^2 - h^2)h.$$

(c) On définit la fonction g sur [0; R] par :

$$g(x) = \frac{\pi}{3}x(R^2 - x^2).$$

On obtient alors que V = g(h) et on recherche le maximum de cette fonction g.

(d) La fonction g est dérivable sur [0; R] comme produit de deux fonctions dérivables sur ce même intervalle

De plus, pour tout $x \in [0; R]$, on a :

$$g'(x) = \frac{\pi}{3} (R^2 - x^2 - 2x^2)$$
$$= \frac{\pi}{3} (R^2 - 3x^2)$$
$$= \frac{\pi}{3} (R - \sqrt{3}x)(R + \sqrt{3}x)$$

Le signe de g'(x) ne dépend que du signe de $R-\sqrt{3}x$ car , pour tout $x\in[0;R]$, on a $R+\sqrt{3}x>0$.

x	$0 \qquad \frac{R}{\sqrt{3}} \qquad R$
Signe de $R - \sqrt{3}x$	+ 0 -
Signe de $g'(x)$	+ 0 -
Variations de g	$\frac{2\pi R^3}{9\sqrt{3}}$

Ainsi le volume du cône est maximal lorsque $h = \frac{R}{\sqrt{3}}$.

On a alors, en utilisant les mêmes arguments du périmètre de la base :

$$2\pi\sqrt{R^2 - h^2} = R\alpha \iff 2\pi\sqrt{R^2 - \frac{2}{3}R^3} = R\alpha$$
$$\iff 2\pi\sqrt{\frac{2}{3}R} = R\alpha$$
$$\iff \alpha = 2\pi\sqrt{\frac{2}{3}}.$$

Soit $\alpha \approx 294^{\circ}$.