NOM:

Prénom:

Exercice 1:—

- (4 points)

Dans chacune des questions suivantes, donner sans justification la seule réponse exacte parmi celles qui sont proposées.

- 1. Dans \mathbb{R} , l'équation $\sin^2(2x) = 0,01$:
 - (a) n'admet aucune solution

(c) admet deux solutions

(b) admet une solution

- (d) admet une infinité de solutions
- 2. La fonction cosinus est une fonction:
 - (a) impaire;
- (b) paire;
- (c) positive;
- (d) ni paire ni impaire.

- 3. La fonction sinus est périodique de période :
 - (a) π ;

(b) $\frac{\pi}{2}$;

- (c) 2π ;
- (d) $\frac{\pi}{3}$.
- 4. La dérivée de la fonction f définie sur \mathbb{R} par $f(x) = \sin(3x)$ a pour expression :
 - (a) $f'(x) = \cos(3x)$;
- (b) $f'(x) = -3\cos(3x)$;
- (c) $f'(x) = 3\cos(3x)$.

Exercice 2:—

(5 points)

Déterminer les dérivées des fonctions suivantes, en détaillant vos calculs :

- 1. $f(x) = -x^3 + \frac{5x^2}{4} + 8, \quad x \in \mathbb{R};$
- 2. $g(x) = \frac{x-4}{x^2+5}, \quad x \in \mathbb{R};$
- 3. $h(x) = \frac{5}{(2-x)^5}, \quad x \in \mathbb{R} \setminus \{2\};$
- 4. $k(x) = 4x\sqrt{-2x+5}, \quad x \in \left] -\infty; \frac{5}{2} \right[.$

$Exercice \ 3:$

- (3 points)

- 1. Rappeler formule de la dérivée de $\frac{u}{v}$ ainsi que la dérivée de la fonction g définie sur \mathbb{R} par $g(x)=x^n$.
- 2. On suppose connu la dérivée de $\frac{u}{v}$ et la dérivée de x^n , avec $n \in \mathbb{N}^*$ et on considère la fonction f définie sur $]0; +\infty[$ par :

$$f(x) = \frac{1}{x^n}$$

Démontrer que :

$$f'(x) = -\frac{n}{x^{n+1}}$$

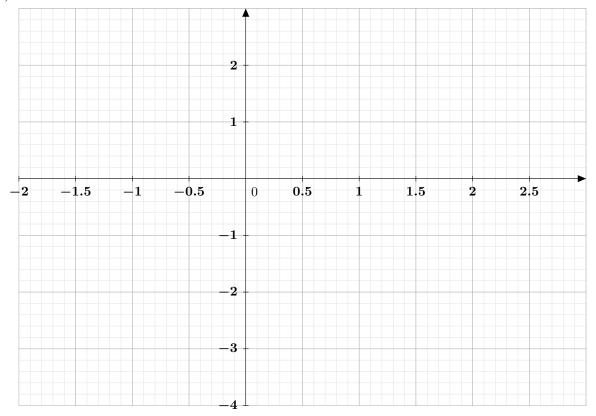
Exercice 4:-

(10 points)

Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = x^3 - 2x^2 - 2x + 1.$$

- 1. Etudier les variations de f sur \mathbb{R} .
- 2. On note \mathscr{C}_f la courbe représentative de la fonction f sur \mathbb{R} .
 - (a) Préciser les coordonnées du point d'intersection de \mathscr{C}_f avec l'axe des ordonnées.
 - (b) Indiquer le nombre de tangentes horizontales à la courbe \mathscr{C}_f .
 - (c) Tracer, ci-dessous, la courbe \mathscr{C}_f ainsi que les tangentes horizontales à cette courbe déterminées en (b).



- (d) D'après le graphique ci-dessus, indiquer le nombre de solutions de l'équation f(x) = 0. L'une d'elles est un nombre entier, laquelle?
- 3. (a) Montrer que, sur $[0; +\infty[$, l'équation f(x) = 0 admet exactement deux solutions α et β ($\alpha < \beta$).
 - (b) Donner un encadrement à 10^{-3} près de α et β .
- 4. Détermination des valeurs exactes de α et β et étude du signe de f(x).
 - (a) Démontrer que, pour tout $x \in \mathbb{R}$, on a :

$$f(x) = (x+1)(x^2 - 3x + 1).$$

- (b) Résoudre, par les calculs, f(x) = 0.
- (c) En déduire les valeurs exactes de α et β .
- (d) Donner le tableau de signes de la fonction f sur \mathbb{R} .
- 5. Discuter, selon les valeurs de k, le nombre de solutions de l'équation f(x) = k.