IV. Limites des suites et recherches de seuil

1. Limite finie

Définition 7.17: — d'une suite convergente vers l

Une suite (u_n) admet une limite l (ou converge vers l) lorsque tout intervalle centré en l (i.e. de la forme $[l-h;l+h],\ h>0$) contient tous les termes de la suite à partir d'un certain rang.

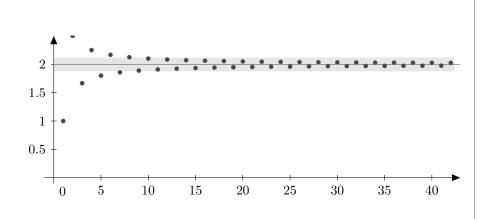
Pour tout h > 0, il existe un rang N tel que pour tout $n \ge N$, on a $|u_n - l| < h$.

On note alors:

$$\lim_{n \to +\infty} u_n = l.$$

Remarque 7.18:-

Graphiquement, cela se traduit par : quelque soit la largeur de la bande horizontale choisie, il existe un rang à partir duquel tous les points de la suite (u_n) sont dans cette bande et il n'y a qu'un nombre fini de points à l'extérieur de la bande.



Remarque 7.19 : -

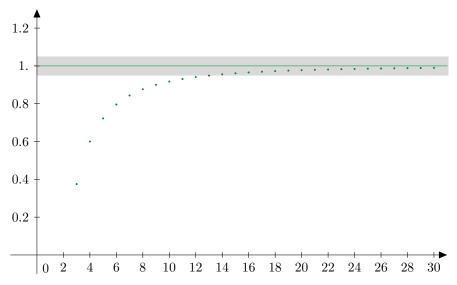
Pour conjecturer la limite d'une suite, on peut utiliser :

- 1. la représentation graphique de u_n dans le plan (c'est-à-dire l'ensemble des points $(n; u_n)$)
- 2. la représentation graphique de u_{n+1} en fonction de u_n ou de (u_n) sur un axe;
- 3. un tableau de valeurs.

Exemple 7.20:

On définit la suite (u_n) pour tout $n \ge 3$ par $u_n = 1 - \frac{10}{(n+1)^2}$.

1. Représenter le nuage de points $(n; u_n)$ pour $0 \le n \le 30$.



2. A l'aide du graphique, conjecturer la limite de la suite (u_n) .

On trace donc la droite d'équation y = 1: lorsque n augmente, la distance entre chaque point $(n; u_n)$ et la droite d'équation y = 1 diminue.

On grise la bande $l - 0,05 \le y \le l + 0,05$.

On remarque que grace au graphique, lorsque $n \ge 14$, tous les points de la suite (u_n) sont à l'intérieur de la zone grisée, c'est-à-dire que lorsque $n \ge 14$, on a $|u_n - 1| < 0,05$.

3. Ecrire un algorithme qui donne la valeur de n pour laquelle $|u_n - l| < 0,05$. Programmer cet algorithme avec Python et donner la valeur de n affichée.

$$u_n \leftarrow -9$$

$$n \leftarrow 0$$
Tant que $|u_n - 1| \ge M$

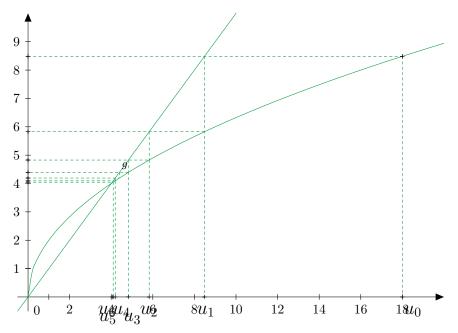
$$n \leftarrow n + 1$$

$$u_n \leftarrow 1 - \frac{10}{(n+1)^2}$$
Fin Tant que

Lorsque la variable M contient la valeur 0,05, la variable n de l'algorithme contiendra la valeur 14 ce qui signifie que le premier entrier n tel que $|u_n - 1| < 0,05$ est n = 14.

Exemple 7.21:

On a représenté, sur le graphique suivant, la fonction f. On définit (u_n) par la relation de récurrence suivante $u_{n+1} = f(u_n)$ et $u_0 = 18$.



A l'aide de ce graphique, on peut conjecturer que la limite de la suite (u_n) semble être 4. En effet, les points représentant les valeurs de (u_n) semblent s'accumuler en 4 (u_4, u_5) et u_6).

2. Limite infinie

Définition 7.22 : — d'une suite divergente vers $\pm \infty$

Une suite (u_n) diverge $vers + \infty$ lorsque pour tout $M \in \mathbb{R}^+$, il existe un rang $N \in \mathbb{N}$ à partir duquel toutes les valeurs u_n sont plus grandes que M (i.e. tel que, pour tout $n \geq N$, on a $u_n \geq M$).

Une suite (u_n) diverge $vers - \infty$ lorsque pour tout $M \in \mathbb{R}^-$, il existe un rang $N \in \mathbb{N}$ à partir duquel toutes les valeurs u_n sont plus petites que M (i.e. tel que, pour tout $n \geq N$, on a $u_n \leq M$).

On note alors:

$$\lim_{n \to +\infty} u_n = \pm \infty.$$

Compl'ement(s):

La vidéo ci-dessous, d'Yvan MONKA, illustre la notion de limite finie à l'aide d'un exemple.

Il utilise un tableau de valeurs pour visualiser cette limite.

Vous pouvez visualiser cette vidéo en utilisant le lien suivant (à partir de 4:10):

https:

//www.youtube.com/watch?v=CsBorh8LLyE&list=PLVUDmbpupCaoqExMkHrhYvWi4dHnApgG_&index=17

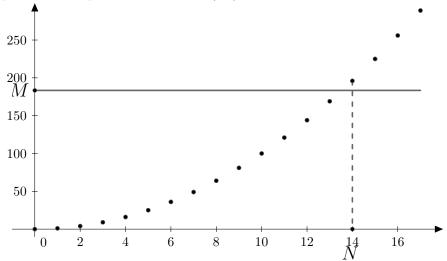
On s'interressera uniquement à la suite (u_n) de cette vidéo. La suite (v_n) sera utilisée ultérieurement.

Complément(s):

Vous pouvez visualiser cet aspect graphique en utilisant l'exercice résolu de votre manuel qui se trouve en page 19 (graphique 2).

Remarque 7.23:

• $\lim_{n\to+\infty} u_n = +\infty$: graphiquement, cela se traduit par : quelque soit un réel M positif, il existe un rang à patir duquel tous les points de la suite (u_n) sont au dessus de la droite d'équation y = M.



• $\lim_{n\to+\infty} u_n = -\infty$: graphiquement, cela se traduit par : quelque soit un réel M négatif, il existe un rang à patir duquel tous les points de la suite (u_n) sont au dessous de la droite d'équation y = M. On obtiendrait un graphique semblable au précédent.

3. Suites n'ayant pas de limite

Il existe des suites qui nont pas de limites. On donnera ici un exemple d'une telle suite.

- Exemple 7.24 : —

La suite (u_n) définie, pour tout $n \in \mathbb{N}$, par :

$$u_n = (-1)^n.$$

Cette suite (u_n) n'admet pas de limite, on dit qu'elle est divergente.

En effet, la suite (u_n) peut être définie pour tout $n \in \mathbb{N}$ par :

$$u_n = \begin{cases} 1 & \text{si } n \text{ est pair} \\ -1 & \text{si } n \text{ est impair} \end{cases}.$$

Pour tout $n \in \mathbb{N}$, on a :

$$-1 \le u_n \le 1$$

Ainsi, la limite de la suite (u_n) ne peut être $+\infty$ ou $-\infty$.

De plus, si la suite (u_n) tend vers une limite ℓ , alors l'intervalle $[\ell - 0, 5; \ell + 0, 5]$ ne peut contenir à la fois -1 (le termes impairs de (u_n)) et 1 (le termes pairs de (u_n)).

On dit alors que la suite est divergente.